

DSSBBTGTPART(A+B)

COMPLEX ANALYSIS

PART-18

07/10/2024 04:00 PM

Limit of Complex Function: -

 $f:D\subseteq\mathbb{C}\to\mathbb{C}$ be a complex function and $z_0\in D$. Then, f is said to have limit l if for given $\varepsilon>0$, $\exists \delta>0$ s.t. $|f(z)-l|<\varepsilon, |z-z_0|<\delta, z\in D$.

Sequential Criteria of limit: $f: D \subseteq \mathbb{C} \to \mathbb{C}$. Then, the following are equivalent.

Algebra of limits:- Suppose $\lim_{z\to z_0} f(z) =$

$$A\&\lim_{z\to z_0} g(z) = B$$

Then,

- (1) $\lim_{z\to z_0} \{f(z) \pm g(z)\} =$
- (2) $\lim_{z \to z_0} \{ f(z) \cdot g(z) \} = 0$
- (3) $\lim_{z \to z_0} \frac{f(z)}{g(z)} =$

<u> Infinite limit: -</u>

- (1) $\lim_{z\to\infty} f(z) = \infty$ iff
- (2) $\lim_{z\to l} f(z) = \infty$ iff
- (3) $\lim_{z\to\infty} f(z) = l$ iff
- (4) $\lim_{z\to\infty} f(z) =$

- Q. $\lim_{z\to 0} \frac{\operatorname{Re}(z)}{\operatorname{Im}(z)}$?
 A) ∞

 - B) 0
 - C) 1
 - D) Does not exist

Q. $\lim_{z\to 0} z^2 + \bar{z}^2$

A) 0

B) 1

C) -1

D) Does not exist

Q.
$$\lim_{z\to 0} \left(\frac{x^2}{x^2 + y^2} + 2i \right)$$
A) 0

- **B)** 2*i*
- C) 1
- D) Does not exist

Q. Evaluate
$$\lim_{z \to i} \left(\frac{z^{2}-1}{z^{2}+1} \right)$$

- A) 0
- **B)** $\frac{-1}{2}$
- C) 1
- D. Does not exist

Q. Evaluate
$$\lim_{z\to\infty} \left(\frac{z^2-2z+1}{z^2+2z+1}\right)$$

- A) 0
- B) 1
- **C)** ∞
- D) -1

Q. Determine
$$\lim_{z\to 1} \left(\frac{z^{3}-1}{z-1}\right)$$

- A) 0
- B) 1
- **C)** 3
- D) 2

Complex Continuous Function:- $f: D \subseteq \mathbb{C} \to \mathbb{C}$. Then, f(z) = u(x,y) + iv(x,y) is continuous at $z_0 = (x_0,y_0) \Leftrightarrow u(x,y) \& v(x,y)$ are continuous at $z_0 = (x_0,y_0)$ if e only if

Algebra of Continuous function:- Given f(z) and g(z) are continuous at $z=z_0$. Then, the function $f(z)+g(z), f(z)-g(z), f(z)\cdot g(z)$ and $\frac{f(z)}{g(z)}$ will be Continuous.

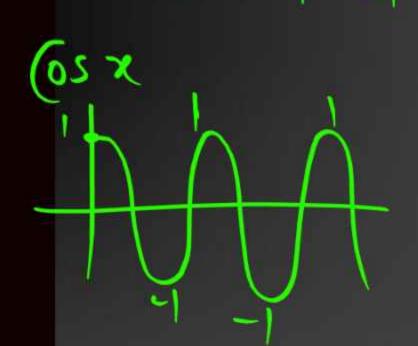
$$Sin(x)$$

$$AAA$$

Q. Determine whether the function $f(z) = \sin(z)$ is continuous in the complex plane.

 $f(z) = \sin(z)$ is continuous everywhere in the complex plane.

(3) $f(z) = \sin(z)$ is continuous only on the real axis.



 $f(z) = \sin(z)$ is continuous only on the imaginary axis.

 $(z) = \sin(z)$ is not continuous anywhere in the complex plane. Cosiy= (oshy Siniy= isinhy

(65 (x4 iy)

Q. Determine whether the function' $f(z) = \cos(z)$ is continuous in the complex plane.

Cosx. (ashy-(Sinx Sinky $\cos(z)$ is continuous in the complex plane. $f(z) = \sin(z)$ is continuous everywhere in the complex plane.

 $f(z) = \sin(z)$ is continuous only on the real axis.

(i) $f(z) = \sin(z)$ is continuous only on the imaginary axis.

(b) $f(z) = \sin(z)$ is not continuous anywhere in the complex plane.

$$f(z) = \frac{z^2 + 2z + 1}{z^2 - 1}$$

$$=$$
 $Z^2 + 2z + 1$ $(z-1)$

Q. Determine whether the function $f(z) = \frac{p(z)}{q(z)}$ is continuous in the complex plane, where p(z) and q(z) are polynomials in $\mathbb{C}[x]$. consider the function: $f(z) = \frac{z^2 + 2z + 1}{z^2 - 1}$.

(A) f(z) is continuous everywhere in the complex plane.

B) f(z) is continuous only where $q(z) \neq 0$.

(2) f(z) is continuous only on the real axis.

f(z) is not continuous anywhere in the complex plane.

- Q. Determine whether the function f(z) = z is continuous in the complex plane.
- f(z) = z is continuous everywhere in the complex plane.
 - B) f(z) = z is continuous only on the real axis.
 - C) f(z) = z is continuous only on the imaginary axis.
 - D) f(z) = z is not continuous anywhere in the complex plane.

1.Polynomials: - Any polynomial function $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_0$, where a_i are complex coefficients, is continuous everywhere in the complex plane.

complex plane. $Z^2 + \alpha_3 Z^3 + \alpha_u Z^4 - - -$

2. Rational Functions: - A rational function $f(z) = \frac{p(z)}{q(z)}$, where p(z) and q(z) are polynomials and $q(z) \neq 0$, is continuous wherever $q(z) \neq 0$.

P(2) (2) #0

3.Exponential Functions: - The exponential function e^z is continuous everywhere in the complex plane.

0,

Gec Z Cosec Z Han Z

4. Trigonometric Functions: - The trigonometric functions $\sin(z)$ and $\cos(z)$ are continuous everywhere in the complex plane.

5. Hyperbolic Functions: - The hyperbolic functions $\sinh(z)$ and $\cosh(z)$ are continuous everywhere in the complex plane.

6.Logarithmic Functions: - The logarithmic function $\log(z)$ is continuous on its domain, which is the complex plane excluding the origin and any branch cuts.

7. Power Functions: - Functions of the form z^a , where a is a constant, are continuous where they are defined. For fractional powers, branch cuts

$$\begin{pmatrix} Z_{+}^{2} \\ \overline{Z_{-}^{2}} \end{pmatrix}$$

 $\left(\frac{Z_{+}^{2}Z}{Z_{-}^{2}}\right)$ are necessary. $\left(\frac{Z_{+}^{2}Z}{Z_{-}^{2}}\right)$

8.Roots: - Functions like \sqrt{z} (square root) are continuous where they are defined, typically involving branch cuts to handle multivaluedness.

9. Complex Conjugation: - The function \bar{z} , which gives the complex conjugate of z, is continuous everywhere in the complex plane. $Z = \alpha + ib$

10. Composition of Continuous Functions: - If f(z) and g(z) are continuous functions, then f(g(z)) is also continuous.

11. Absolute Value Functions: - The function |z|, which gives the magnitude of z, is continuous everywhere in the complex plane.

